Code: CE3T3

II B.Tech - I Semester-Regular/Supplementary Examinations November 2017

MECHANICS OF SOLIDS-I (CIVIL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$

1. a) What is factor of safety?
b) Draw stress - strain diagram for mild steel and state salient points.
c) What is point of contraflexure?
d) Draw and name different types of loads.
e) Define Kernel of a section.
f) Draw the diagrams for Sagging Moment and Hogging Moment in the case of Beam.
g) A circular section is used as a beam. What is the magnitude of maximum shear stress and where does it occur?
h) What is Resiliance?
i) What are the assumptions in torsion equation?
j) What is the combined stiffness, when two springs are connected in series?
k) What is the formula for deflection of close coiled helical springs?

PART - B

Answer any THREE questions. All questions carry equal marks.
$3 \times 16=48 \mathrm{M}$
2. a) A specimen of steel 25 mm in diameter with gauge length of 200 mm is tested to destruction. It has an extension of 0.16 mm under a load of 80 KN and the load at elastic limit is 160 KN . The maximum load is 180 KN . The total extension at fracture is 56 mm and diameter at the neck is 18 mm . Find
i) The stress at elastic limits
ii) Young's modulus
iii) Percentage elongation
iv) Percentage reduction in area
v) Ultimate tensile stress
b) A circular rod of diameter 20 mm and 500 mm long is subjected to a tensile force 45 KN . The modulus of steel may be taken as $200 \mathrm{KN} / \mathrm{mm}^{2}$. Find stress, strain and elongation of the bar due to applied load.
3. a) Draw the BMD and SFD for the overhanging beam shown in the following figure. Also, indicate all significant values including the point of contraflexure.

b) Draw the SFD and BMD of a cantilever beam of span 3.5 m carrying point loads of 10 KN and 20 KN at a distance of 1.5 m and 2.5 m from free end.

6 M
4. a) A symmetrical I-Section has flanges of size 180 mmx 10 mm and its overall depth is 500 mm . Thickness of the web is 8 mm . It is strengthened with a plate of size 240 mmx 12 mm on compression side. Find the moment of resistance of the section, if permissible stress is $150 \mathrm{~N} / \mathrm{mm}^{2}$. How much uniformly distributed load can it carry if it is used as a cantilever of span 3m?
b) State the assumptions in simple theory of bending. 6 M
5. a) The unsymmetrical I-section shown in the following figure is subjected to a shear force of 40 KN . Draw the shear stress variation diagram across the depth.

10 M

b) Compare the strain energy stored in two bars of the same material as shown in the following figure, if the gradually applied load is same.

6. a) A closed coil helical spring is made with 12 mm diameter wire and is having mean diameter of 150 mm and 10 complete turns. The modulus of rigidity of the material of the spring is $80 \mathrm{kN} / \mathrm{mm}^{2}$. When a load of 450 N is applied, find maximum shear stress, strain energy stored, deflection produced and stiffness of the spring.
b) During tests on a sample of steel bar 25 mm in diameter, it is found that the pull of 50 kN produces an extension of 0.095 mm on a length of 200 mm and a torque $200 \mathrm{~N}-\mathrm{m}$ produces an angular twist of 0.9 degree on a length of 250 mm . Find the poisson's ratio of steel.

